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Laplace  O p e r a t o r  and R a n d o m  W a l k  on  
O n e - D i m e n s i o n a l  N o n h o m o g e n e o u s  Latt ice  
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A classical result of probability theory states that under suitable space and time 
renormalization, a random walk converges to Brownian motion. We prove an 
analogous result in the case of nonhomogeneous  random walk on one- 
dimensional  lattice. Under  suitable conditions on the nonhomogeneous  medium, 
we prove convergence to Brownian motion and explicitly compute the diffusion 
coefficient. The proofs are based on the study of the spectrum of random 
matrices of increasing dimension. 

KEY WORDS: Random walk on nonhomogeneous lattice; spectrum of a 
random matrix. 

1. INTRODUCTION 

Let a0, al, a 2 . . . .  be a sequence of positive numbers. Consider an operator 
A ( N ) : R u - I ~ R  u - l  w h i c h  a c t s  on  the  v e c t o r  u (u)  = ( u ( N ) ,  
u2 ~u) . . . .  , U~N)I) in the following way: 

(A(~u(~)~= (1 - ~ k _ , ) a ~ _ , u ~  - (a~_~ + a~)u~ ~) + (1 - 8~_k 'a u (~  - - l )  k k + l  

where 

1, k = O  
~k = 0, k v ~ 0  

This operator may be treated as the analog of the Laplacian and the 
equation 

~(N) = A (U)U(m (1) 

as a diffusion equation on a nonhomogeneous lattice with the nodes 
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located at the points 1 / N ,  2 / N  . . . . .  ( N  - 1 ) / N  and with absorbing barri- 
ers at the points 0 and 1. The sequence ao, a~,a z . . . .  may be treated as 
sequence of random variables. In this case Eq. (1) describes a diffusion on 
the lattice with random transport coefficients. 

In the present paper we consider the asymptotic behavior when N 
tends to infinity. Our main result is that, under suitable conditions of 
macroscopic homogeneity formulated below and an appropriate scaling of 
time the solutions of Eq. (1) tend to the corresponding solutions of the 
diffusion equation 

= a r t "  

on the interval (0, 1) with the boundary conditions u(O) = u(1) = O, where 

a =  lim N aE 1 (2) 
N---~ + ~ 

Using more physical language we can say that a self-averaging of the 
one-dimensional nonhomogeneous medium takes place and the formula (2) 
gives the way to compute the macroscopical diffusion coefficient of the 
limit homogeneous medium. 

2. ASSUMPTIONS AND RESULTS 

Let us assume that the sequence ao,al, a 2 , . . ,  satisfies the following 
condition of macroscopic homogeneity: 

E. The following limit exists and is positive: 

a lira N( N-1 )-1 = y ,  a ;  1 
N ~ + ~  \ k = O  

Examples of sequences satisfying the above condition are given by the 
typical realizations of stationary random processes for which 0 < Ea~ -1 

< + oo. In this case the condition E holds almost everywhere. If the 
random process is also ergodic then a is constant almost everywhere, 
namely, 

a = (Ea~-1)-].  

We also need the following condition: 

B. a k >/ c > 0 for all k, which is of a more technical character. 

Let h~v), X ~ N ) ~  2 , . . . ,  X~N) x be the eigenvalues of the operator A ~N) 
numbered in nonincreasing order, q9 (N)' J be the eigenvector of the operator 
A (~v) corresponding to the eigenvalue xj~v) such that cp} N)' J >/0 and 
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N -  l ~ '~N-  I ( ~ ( N ) ,  
/ , k = l l . ' P k  j )2= 1. TO the vector cp (N)'j U R  N-1 let us associate the 

step function defined on the interval (0, 1): 

( ~(N), j N - I  
~0(N), j ( ~ )  = VtN~ ] < ~ < 1 

0, 0 < ~ < N-1  (3) 

We prove the following theorem: 

Theorem 1. If condition E holds then 

(a) lim N2~).N)=--a~r~2 
N--+ + oo 

(b) lim q0 ~N)' J(~) = ~-sinQrj~) 
N--> + ~ 

and the convergence is uniform in ~ E (0, 1). Moreover for every j there 
exists a number N ( j )  such that for every N > N ( j )  the eigenvalue hj (N) is 
nondegenerated. 

Let (A(N)) - l  be defined by the matrix lit (u) l To this matrix corre- 
k , m  ~ 

sponds the step function 

r(m)(l~, TI) = ( N - l,.(N) N - l "[m*],[Nn], < ~ < 1  and N - ~ < ~ 7 < l  

0, 0 < ~ < N  -~ or 0 < n < N  -~ (4) l 

defined on the square (0, 1) • (0, 1). 

Theorem 2. If condition E holds then 

lim r~N)(~,rt) = a-l(~rl -- min(~,~)) 
N---~ + oo 

and the convergence is uniform on the square (0, 1) • (0, 1). 
Let T t, t >/0 be thesemigroup of operators generated by the diffusion 

equation 

( t  -~- a u  tt 

u(0)  = u(1)  = 0 (5) 

on the interval (0, 1) with zero boundary conditions (see Ref. 1). It acts on 
the space M of finite measures on the interval (0, 1). If /x is some finite 
measure on the interval (0, 1) then/z t = Tt#. 

As a Cauchy initial condition for Eq. (1) we take the vector /z (u) 
= (/~U), #~N), . . . , #(NN)0 E •N-l, where 

I~ N) = N l ~ ( [ k / N , ( k  + 1) /N)) ,  k = 1,2 . . . . .  N -  1 (6) 

Let u(N)(t) be a solution of Eq. (1) with such initial condition. As above we 
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define the step function on the interval (0, 1) 

( u  (N) tt~ N - I  iN, I t  )' < '~ < 1 
u(U)(~,t)= 0, 0 < ~ < N - '  (7) 

Then the following theorem is true. 

T h e o r e m  3. If conditions E and B hold then 

lira u(U)(r dtzt t > 0 
N ~ + ~  

and the convergence is uniform in the variables (~, t,/~), where ~ ~ (0, 1), 
t >1 c > O, ~ ~ M. [(dlzt/dO( 0 is the density of measure ~t]. 

Consider the random walk on the lattice with nodes at 1/N,  
2 / N  . . . . .  ( N -  1) /N and with absorbing barriers at the points 0 and 1. 
Let the probability of transition for the time At from the node k / N  to the 
node ( k - 1 ) / N  be ak_lAt + o(At), from the node k / N  to the node 
(k + 1) /N be a k At + o(At) and the probability to stay at the node k / N  for 
this time interval be 1 - ( a  k_ l+  ak)At + o(At). Let us assume that the 
trajectory of random process is right continuous. Then A ~u) is the charac- 
teristic operator for this Markov process. Let [Ipk(,Um)(t)ll be the transition 
probability matrix for this Markov process. 

Consider additionally the Brownian motion on the interval (0, 1) with 
absorbing barriers at the points 0 and 1 corresponding to characteristic Eq. 
(5) and let p(~,~, t) be the transition function for this process (see Ref. 2). 
Define as above 

( NIJ (N) tt~ N -  1 p(N)(~,~I,I) = / ' [ N ~ I , [ N n I t  ) '  "<< ~ < 1 and N -1 < ~ < 1 

0, 0 < ~ < N  - l  or 0 < ~ / < N  -1 

Theorem 4. If conditions E and B hold then at t > 0 

lim p~N)(~,n, N2t)=p(~,n,t) 
N - - ~ +  oo 

and the convergence is uniform in (4, 71, t), where 

(~,~/) ~ (0, 1) • (0, 1), t /> e > 0 

. PROOFS OF THEOREMS 1 AND 2 

Let us begin with the following lemma. 

L e m m a  1. Consider the chain of equations 

ak-lXk-I -- (ak-1 + ak)Xe + aeXk+l = kX~ 
k = 1,2,3 . . . .  

(8) 
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where ~ is a complex number. Let x~(~), k = 1,2, 3 . . . . .  be the solution of 
this chain of equations with the initial conditions 

x o = O, xl  = aao I (9) 

For ~ ~ [0, 1] assume that 

FN (X, = N -  

If condition E holds then 

lira F N (X, ~) = (X/a) -1/2 sinh [ ~(X/a) 1/2 ] 
N---> + ~ 

and the convergence is uniform in (~, ~), where ~ belongs to a compact 
subset of the complex plane, ~ E [0, 1]. 

Proof.  Let 

xk(X) = 
n = 0  

where xl, , .  is independent of ~. 
From (8) it follows that 

a l ( X l + l ,  n --  Xl, n )  = a l _ l ( X l ,  n - -  X l _ l , n )  + ( 1  - -  ~n)X l ,  n _ l  

1 = 1 , 2 , 3 , . . . ,  n = 0 , 1 , 2  . . . .  

where 

1, n - - 0  
~ ' =  0, n > 0  

Summing these equations over l = 1,2 . . . . .  m and using initial conditions 
(9), we have 

am(Xm+1, . -- Xm, n) = 6,a + (1 -- 8n) ~ X/,n_ , 
l = 1  

Divide these equations by a m and sum them over m - 1, 2 , . . . ,  k - 1. 
Then using the initial conditions, we have 

k - 1  k - 1  

xk, n = 6na Z am I + (1 - 8,) ~,, a,,~ 1 x t , . _  l (10) 
m ~ O  m = l  1=1 

k- -  2,3,4 . . . .  

Now we prove that 

lira k-~:"+])"-~k,,----[(2n + 1 ) ! a " ] - '  (11) 
k---) + ~ 

" Condition E implies that 
k - 1  

k - l  ~ a m ' =  a - ' +  6 ( k )  (12) 
m ~ 0  
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where 8(k)--~0 when k--~ + ~ .  Hence 
k - I  

lim k-lXk, O= lim k-~a ~ a ~ l = l  
k--~ + ~o k--) + ~ m = 0  

and Eq. ( l l )  holds if n = O. 
We suppose that 

k-(2"-')Xk,._, = [ ( 2 n -  1 ) ! a " - ' ] - l +  e(k) 

where e(k)--~ 0 when k--~ + ~ .  Using this inductive assumption and Eq. 
(12) we find from recurrent relation (10) 

k - l ( k - 1  l - 1  ) 
k-(2n+l)x = k - ( 2 n + l )  - _ i x 

k,n 2 ~ .am '  2 a m  , ~ .... 
/=1 m=O m = 0  

k - I  
= k-(2"+') 2 {k ( a - '  + 8 ( k ) ) -  l ( a - ' +  8 ( / ) ) } l  2n-t 

l = l  

• { [(2n -- l ) ' a ~ - ' ] - '  + ' ( l ) }  

k - 1  
= k -(2n+') ~ (k - l)12"-'[(2n - 1)!an]-I + 0(k) 

l = l  

L "'( 10(k)[ = k -(2n+O 2 (k - l)12n-la-ls "t- [kS(k) - 18(l)]l 2~-'~ 
l=l 

X ( [ ( 2 n - - 1 ) ! a n - l ] - ' + , ( / ) ) } l  

k - 1  
< a- lk  -1 ~., I'(l)l + [( 2 n -  1)tan- l ]  -Z 

l=1 

k - 1  k - I  

X 13(k)l + k- '  ~,, 18(l)1 + k-'13(k)l ~ le(l)] 
l=1 l=1 

k - - ,  )1} 

/=1 

when k-~ + oe. Hence 

lira k-(2n*')Xk, n=[(2n-  1)!an] - '  
k--~ + oo 

= [ ( 2 n + l ) ! a n ]  - l  

Thus, Eq. (11) holds for every n. 

k - l  
l i ra  k -(2"+b ~ ( k -  l)l 2n-~ 

k--~ + ~ l=1 
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In a similar way by using condition E and recurrent relation (10) one 
can prove that there exist positive constants cj and c 2 such that 

k-(2, ,+ l)x k , .  <'< 

k = 1 , 2 , 3 , . . . ,  n = 0 , 1 , 2 , . . .  (13) 

Let 8 ~ [0, 1]. It follows from Eq. (11) that 

lira k - ( e " + ' ) x  - 1)!a") - l  (14) k--, + ~ Iktl,,-- ~2"+*(( 2n + 

and the convergence is uniform in ~ ~ [3, 1], where 6 is any positive 
number. Besides relation (13)implies that the functions k-(Zn+l)x[kt], ,  , are 
equicontinuous at ~ = 0. Therefore in relation (14) the convergence is 
uniform in ~ ~ [0, 1], 

Consider now the series 

n = 0  

which contains only a finite set of nonvanishing terms. If ~ ~ [0, 1] and 
Ihl < A then it follows from relation (13) that this series is dominated by the 
convergent series 

r E 
n ~ O  

Hence 
+oo 

k-(2~+l)x. , hn lira Fk(X,~ ) = ~ lira l~t~,~ 
k - ~  + ~ n = O  k--~.+ ~ 

= E ~2"+1[( zn + 1 ) ! a ' ] - ~ X " = ( 7 ~ l a ) - ' / 2 s i n h [ ~ ( X l a )  '/2] 
n=O 

and the convergence is uniform in variables (X,~), where IX I < A and 
II. 

This concludes the proof of Lemma 1. [] 

Proof  of  T h e o r e m  1. Let Ak(h) be the characteristic polynomial of 
operator A (k), k = 2, 3, 4 , . . . .  Then the sequence Ak(X ) satisfies the chain 
of recurrent equations 

Ak+ 1 _ (ak_ ~ + ak + X)2x k 2 .~. _ a k _ l A k _ l  

with the initial conditions 

Ao--- 0, A 1 = 1 

We now set 

xk(X) --- a(aoa 1 . . .  a k _ z ) - l (  - 1)k- ~Ak(k), k = 2 , 3 , 4 , . . .  
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T h e n  Xk(~k ) is the solution to the chain of recurrent equations (8) with initial 
conditions (9). Therefore Lemma 1 implies 

lim a(aoal . . ,  ak_ | ) - l (  - 1)k-lk-lAk(X/k2) 
k-~ + oo 

= lira k- 'Xk(X/k  z) = (X/a)- ' /2sinh[(X/a)  '!2] (15) 
k--> + oo 

and the convergence is uniform in h in compact subsets the complex plane. 
Let k~ k) , h~2 k) . . . . .  Xk~k__) 1 be the eigenvalues of operator A (k) numbered 

in nonincreasing order. Then the roots of the polynomial Ak(h/k 2) are 
k2~) k), j = 1,2 . . . . .  k -  1. The limiting function (~t/a)-l/2sinh[(~t/a) 1/2] 
vanishes at hj = -arr2j2,j = 1,2, 3 . . . . .  Hence relation (15) and the argu- 
ment principle (see, for example, Ref. 3) imply 

lim k2~k) k)= --a'/t2] 2 (16) 
k---> + oo 

The argument principle also implies that for each j there exists a number 
N(j) such that for all k > N(j)  the eigenvalue ~](k) is nondegenerated. 

Let now r j be an eigenvector of the operator A (N) corresponding 
to the eigenvalue kffv) such that r j >/0 and 

N--1  

k = l  

Equations (8) and (9) imply that the vector 

(X,(~(N'), X2(~ ~ ' )  . . . .  , X~_ ,(x)N')) ~ ~ - '  

is an eigenvector of the operator A (N) corresponding to the eigenvalue 
Xj (N). We shall suppose that N is large enough and therefore X) N) is a 
nondegenerated eigenvalue. Then we have 

r u)" J= N-'Cj.(N)Xk(~k)N)), k = 1,2 . . . . .  W - 1 

where 
N - I  

and according to definition (3) 

kJu" 

Let 

]2 -'J2F, (N2X N', 0 

F(~k,  ~) = ( ~ k / a )  - 1 / 2  s i n h  [ ~(X/a)'/2] 
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Then using Lemma 1 and Eq. (16) we obtain 

lim F~(N2L(.N),~)= F (;~j, ~) 
N---> + oo 

427 

+ lim (Fu(N2~)N),O-F(N2Aj(N' ,~))  
N--> + oo 

+ lim [F(N2~,(.N),~) - FO~j, ~) } 
N---> + oo t x a - J  

= r ( x j ,  

uniformly in ~ ~ (0, 1), where ~j = - a~2j 2. Hence 

t" ~1 ~ ) - 1 / 2  
lim r (Jo [F(XJ'~)]~d~I F(k,j,~)--v~sin(~rj~) 

N-~+ oo 

uniformly in ~ E (0, 1). 
This concludes the proof of Theorem 1. �9 

Proof of Theorem 2. The numbers r (N) 1 < k < N -  1, 1 ~< m k,m 
< N -  1 satisfy the system of equations 

a r (N) + "~ ~ ( N )  .iv a r (N) = 6k m k - 1  k - l , m  -- ( a k - l  ~k) 'k ,m k k+l ,m , 

r(N) _ r ( g )  = 0 O,m --  g,m 

w h e r e k = l , 2  . . . . .  N -  1, m = l , 2  . . . . .  N - l ,  

1, k = m  
6 k ' m =  O, k ~ m  

Solving this system of equations in a similar way as in Lemma 1 we obtain 
k - 1  k - 1  

r(N)k,,~ = ao.l,mAN) ~ at-1 + O(k - m) ~ ai -1 
l=0 l=m 

r (N) r (N) = 0 O,m = N,m 

where 

1, k > 0  
O(k)=  O, k < O  

The condition r(N)N,m = 0 implies that 

( N - - l )  - 1 N - I / = 0  
r ( N ) - -  -- ao E a ~ l  l,m --  E a1-1 

l=m 

and, finally, 

r(N)=~,m O ( k - m )  2 al- l_  a~ ~ 2 al- 1 2 aT' 
l=m l=m l=O 
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Therefore 

lira N - l.(N) "[N~I, tN, I -  0 ( ~ -  ~1)(#- ~ ) a - '  + (1 -- ~)~a -1 N--~+ 

= a - l { ~ * / -  min(~,~/)} 

and the convergence is uniform in ((, ~) E (0, 1) x (0, 1). 

4. THE PROOFS OF THEOREMS 3 AND 4 

First we need uniform estimations for the eigenvalues and the eigen- 
vectors of the operators A (~v). 

Le mm a  2. If condition B holds then there exists a constant c 3 > 0 
such that N2hy~ N) < - c 3 j  2. 

Proof. Let .~(u) be the operator defined as A (N) in the case when alt 
ak = e, Then A (N) < ~(N). 

Indeed, for any u (N) E •N- 1 we have 

N - I  N-2  

Z (A(N)u(~)),A~) = -ao("V)) 2- Z "~(u(~+~- "~))~- "~-,("(2L),) 2 
k=l k=l  

N--2 
<'< -c(uV))  ~- E c("i~+~ - "~))~- ~(,,~:,)2 

k=l 
N- I  

= Z (X(~)u(N));'(~ ~). 
k=l 

Since the eigenvalues of operator .~(N) equal -4csin:(~rj /2N),  j---1,  
2 . . . .  , N - 1 ,  then ~(N)< _4csin2(~rj/2N). From the inequality sinx 
> 2x/qr which is true for x ~ [0,~r/2] it follows that 

)~(u) < _ 4c sin2(rrj/2N) < - 4c jZ /Y  2 

This concludes the proof. �9 

Le mm a  3. Let ~(N),j be an eigenvector of operator A (u) corre- 
sponding to the eigenvalue X }u). If condition E holds then there exists the 
constant c 4 such that 

( N--1 )1/2 
max lep(kN)'Jl<<.-c4N2~j (N) N - '  Z (~(kN)'J) 2 

k=l,2 . . . . .  N-1 k=l  

Proof. Using definition (3) one can rewrite the last inequality in the 
following way: 

sup II~(N)~/(~)I < --c4N2)k;N)(~OOI[~(N)'J(~)]2d~} 1/2 
~e(0, l) 



Laplace Operator and Random Walk 429 

The vector ~(U)j is the solution of the equation 

Therefore, according to definition (4) we have 

rg(N)'J(~) = N2k(N)folr(N)(~, ,)rg(N)'j('q) d ,  

As follows from Theorem 2, there exists the constant c 4 such 
[r(N)(~, ~)1 < e4. Applying this estimate to Eq. (17) we obtain 

< -- C4N2~j(N)~o ' [ fp(N) 'J(Tl)]  dT l 

This concludes the proof. II 

(17) 

that 

Proof of Theorem 3. Let 

(IA(N),s (/*, qfl) = ~- fo'Sin(Trj~) d/* (~) 

According to definitions (3) and (6) 
N - 1  

folcP(N)'Y(~)dl*(~) = N - '  ~, I*(ff)cp(ff )J 
k = l  

Using notations (7) we obtain 
N - 1  

u(N)(~,N2t) = ~] (#(N),ep(N)'J)ep(N)'J(~)eU~X~N" (18) 
j = l  

Besides (see, for example, Ref. 4) 

(~) = E ( tz, rPJ)rPJ(~) e~/ 
j= l  

w h e r e   sin(,qO, xj = 2. 
It follows from Lemmas 2 and 3 that 

< c2N4(XJU))2eW~+'N't 

< c2t--2(N2X)U)t)2eU2~(u)' 

< c,,-2(c3j2E)2e -c,j=~ 
r,2,,,2/2 9 -- cjjZe 

if t/> e > 0 a n d j  2/> 2/e3e. Therefore, if t/> E the series (18) is dominated 
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by the convergent series 
+oo 

2 2 j2e-C~fc C3C4 E 
j = l  

Using Theorem 1 we obtain for t > 0 

lira u(N)(~,N2t)= ~ lim ((~(N),~(u)'J)~p(~)J(~)eN%") 
N--> + oo j = l  N-.-> + oo 

+ 0o dls 
= ~ (~t,~J)rpJ(~)eb'= (4) 

j = l  

and the convergence is uniform in (~,t,/x), where ~ E (0, 1), t > ( >  0, 
~ M .  

This concludes the proof of Theorem 3. [] 

Proo[ of Theorem 4. Let ~(0 be the 6 measure at the point 
E (0, 1). Then if t > 0 

d (O, 
dn (n) = P(~'7/' t) 

Besides the vector f"(N)rtX ,,(w)q~, ,,(;v) RN- ~/'k,l ~ J, i'k,2 ~ J . . . .  v~,u- 1(0) ~ is the solution 
of Eq. (1) with the initial condition p~,m)(O)= 6k,m" Therefore this theorem 
directly follows from Theorem 3. [] 

Note. We would like to emphasize the decisive role of a computer 
experiment in the formulation of Theorem 1. 
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